INTRODUCCIÓN A LA BIOINFORMÁTICA

POSTGRADO Y FORMACIÓN PROFESORADO

TRABAJO FINAL

<u>UNED</u>

PRÁCTICA O LECCIÓN GUIADA

UTILIDADES DE LA BIOINFORMÁTICA

EL COVID 19, UN ANÁLISIS DEL GENOMA Y HERRAMIENTAS DE BIOINFORMÁTICA

Santiago Royuela Samit <u>Mayo de 2022</u>

INTRODUCCIÓN

En la siguiente práctica o lección guiada vamos a introducir al alumno en los conceptos básicos de la biología molecular y la computación, centrándonos en el código genético universal codificado en los ADN's y ARN's, y atendiendo a los distintos recursos informáticos a los que podemos acceder en la actualidad, dando a conocer el gran potencial de esta nueva ciencia que emerge desde la biología, la matemática, la físicoquímica y la computación. De esta manera, se le abre al alumno una puerta para darle a conocer los diferentes recursos que existen en la red para el análisis de datos biológicos, genéticos, proteómicos, etc, todo ello mediante una práctica guiada en la que verá el potencial de diferentes recursos y en donde se enfatizarán aspectos teóricos.

Para centrar al alumno, se le guiará a través del genoma del conocido virus **COVID-19**, despertando el interés de la bioinformática aprovechando la ingente información e impacto de esta pandemia acontecida, así como las nuevas técnicas de inmunización basadas en **vacunas de ARNm**. De esta manera, se trata de una práctica guiada o magistral del profesor al alumno profano con algo de conocimiento, mediante la cual, a la vez que se le muestran herramientas informáticas accesibles en red, se le explican conceptos propios de la biología molecular y de la bioinformática. Durante la práctica o lección guiada, el profesor podrá o deberá ir explicando conceptos como los de transcripción, traducción, código genético universal, gen, ADN, ARN, ARNm, splicing alternativo, ORF, CDS, intrones y exones, regiones UTR, codones, pautas de lectura de codones en una secuencia, así como los conceptos de biología o físico-químicos pertinentes en cada momento etc.

ACCEDIENTO A LA INFORMACIÓN DEL VIRUS DEL COVID-19

Cuando escuchamos hablar de la **pandemia del virus del Covid-19** y no somos expertos en la materia, podemos proceder a realizar un estudio con base científica para conocer muchos aspectos a tener en cuenta ante esta alarmante situación. Si lo que pretendemos es conocer dicho virus, sus variantes y vacunas posibles, recomendaremos acudir a la página web de **National Center for Biotechnology Information** (NCBI: <u>https://www.ncbi.nlm.nih.gov/</u>) para comenzar a buscar información acerca de este virus.

Accediendo a la página realizaremos una búsqueda seleccionando "All **DataBase**" introduciendo la palabra "COVID 19" y nos redirigirá a la página con los siguientes resultados de búsqueda que mostramos en la figura 1.

Search NCBI	covid 19		X Se	arch	
esults found in 25 databases					
TAXONOMY Severe acute Severe acute of Severe acute Taxonomy ID: 2097 NCBI SARS-COM	e respiratory syn espiratory syndrom e respiratory syndro 049 I-2 resources	Was t drome coronavirus 2 e coronavirus 2 is a below-specie ome-related coronavirus	es classification	NCBI Virus The most up-to-de SARS-CoV-2 nucle protein sequences	ate set of eotide and s
NCBI Virus Browse and download					
Literature		Genes		Proteins	
Bookshelf	4,404	Gene	433	Conserved Domains	0
MeSH	144	GEO DataSets	5,546	Identical Protein Groups	0
NLM Catalog	1,375	GEO Profiles	0	Protein	551,767
PubMed	255,633	HomoloGene	0	Protein Family Models	0
PubMed Central	328,540	PopSet	86	Structure	3
Genomes		Clinical		A CONTRACTOR	The second se
Assembly	0	ClinicalTrials.gov	8,828	N. Carlos	
BioCollections	0	ClinVar	12	J. S.	
BioProject	417	dbGaP	0		×
BioSample	4,869,249	dbSNP	0		
Genome	0	dbVar	9,335	SARS-CoV-2 protein struct	ures
Nucleotide	53,083	GTR	99	View 3D structures and conserv novel coronavirus proteins, inclu	ed domains of Iding (S)pike.
SRA	3,933,529	MedGen	106	(E)nvelope), (M)embrane, and (N	v)ucleocapsid
Taxonomy	1	OMIM	5		
PubChem					
BioAssays	610				
Compounds	1,668				

Ilustración 1. Resultado de la búsqueda en el NCBI por la palabra "Covid 19".

Vemos que si clicamos en <u>TAXONOMY</u> nos llevará a una página donde aparece un resumen de la taxonomía del virus, su genoma e identificaciones pertinentes que

Severe acute respiratory syndrome coronavirus 2 🔅

Severe acute respiratory syndrome coronavirus 2 is a below-species classification of Severe acute respiratory syndrome-related coronavirus

2,278

Browse taxonomy		
Current scientific name	Severe acute respiratory syndrome coronavirus 2	
Acronym	SARS-CoV-2	
Genome type	ssRNA(+)	
NCBI Taxonomy ID	2697049	
For more details see NCBI T	axonomy	

Genome Browse all genomes in NCBI Virus

Pathways

Substances

Reference genome ASM985889v3 Jan 13, 2020 Referg GCF_009858895.2

Download	
Genome size	29.9 kb
Viral segments	1
Genes	11

Annotation from NCBI RefSea

External links Encyclopedia of Life Wikipedia pasaremos a analizar.

Ilustración 2. Identificación del virus SARS-CoV-2 y acceso a su genoma en el NCBI. Podemos ver el tamaño de la secuencia del genoma, los segmentos virales y los 11 genes que posee el virus.

Genome	enome								
owse all genomes in NCBI Virus									
Reference genome ASM985889v3 Jan 13, 2020 RefSeq GCF_009858895.2									
GCF_009858895.2									
Genome size	29.9 kb								
Viral segments	1								

Genes

Annotation from NCBI RefSeq

11

Ilustración 3. Visión esquemática del genoma del Virus SARS-CoV-2 y sus genes. Es importante el número de referencia de la secuencia o la referencia del genoma de GenBank, que en este caso es NC_045512.2

Assembly statistics

These statistics describe the nuclear genome of the reference sequence, GCF_009858895.2

29.9 kb
1
1
37.5
Complete Genome

Annotation details

Provider		
Name	NCBI RefSeq	
Date	Jan 13, 2020	
Genes	11	
Protein-coding	11	
Non-coding	0	

View all genes (includes updated and unannotated genes)

Chromosomes

Chromosome	GenBank	RefSeq	Size (bp)	GC content (%)
ANONYMOUS	MN908947.3	NC_045512.2	29.903	37,5

Si clicamos en "**Reference genome**"

nos llevará a una página en donde aparece una descripción más detallada del genoma del virus y podremos acceder a un enlace "<u>View</u> <u>all genes</u>".

Ilustración 4. Descripción estadística del genoma del SARS-CoV-2

Vemos el tamaño del genoma y su porcentaje de nucleótidos GC. También podemos ver que hay 11 genes, indicando su identificación, símbolo y nombre. Vemos que los 11 genes de SARS-CoV-2 codifican para proteínas:

Ilustración 5. Los 11 genes del virus de SARS-CoV-2 y las proteínas víricas para las que codifican.

Download 🗸	Select columns		Rows per page 20 - 1-11 of 11 <	>
Sene ID	Symbol	Gene name	Gene type Transcripts	Action
3740568	S	surface glycoprotein	protein-coding	:
13740569	ORF3a	ORF3a protein	protein-coding	:
13740570	E	envelope protein	protein-coding	:
13740571	м	membrane glycoprotein	protein-coding	:
13740572	ORF6	ORF6 protein	protein-coding	:
13740573	ORF7a	ORF7a protein	protein-coding	:
3740574	ORF7b	ORF7b	protein-coding	:
13740575	Ν	nucleocapsid phosphoprotein	protein-coding	:
13740576	ORF10	ORF10 protein	protein-coding	:
13740577	ORF8	ORF8 protein	protein-coding	:
13740578	ORF1ab	ORF1a polyprotein;ORF1ab polyprotein	protein-coding	:

Si clicamos en cada uno de los **11 genes** podemos acceder a un navegador genómico dichas para ver regiones en el genoma, así como sus transcritos y productos. A estas alturas, ya hemos identificado que el COVID-19 (SARS-CoV-2) es un virus de ARN con un genoma de tamaño 29.9 kb. Observamos que de 11 genes salen 28

productos proteícos.

Ilustración 6. Podemos acceder al fichero FASTA del gen que codifica a la proteína S, así como su transcrito y

		J	
Cono ID	Symbol	Gene name	Download
	Symbol	Gene name	Download a data package for gene (GeneID:
13740568	S	surface glyco	43740568) Jin
13740569	ORE3a	ORE3a protei	Select file types - estimated size 1 Mb
10740000			✓ Gene sequences (FASTA)
13740570	E	envelope pro	Transcript sequences (FASTA)
13740571	М	membrane g	Protein sequences (FASTA)
13740572	ORF6	ORF6 protein	Your selected data will be downloaded as a ZIP archive
13740573	ORF7a	ORF7a prote	Name your file
			ncbi_dataset.zip
13740575	N	nucleocapsic	
127/0576	ODE10	ODE10 proto	

proteína para analizarlo con el programa SnapGen Viewer que veremos más R adelante.

Si

descargamos los ficheros **FASTA** del gen, transcrito y proteínas podemos ejecutarlos en **SnapGene Viewer** y ver la secuencia de **aa** del transcrito.

Las

herramientas que vamos a utilizar son la base de datos del **NCBI**, el buscador **ORF FINDER** y el programa de descarga gratuíta **SnapGene Viewer**.

MFV	FLV	LLPLV	SSQC	VNLTT	RTQLPF	PAYTNS	SFTRG	VYYPDK	VFRSS	VLHST	QDLFI	LPFFSI	NVTWFH	AIHVS	GTNG	TKRFDI	VPVLP	FNDGVY	FAST	EKSNII	RGWIF	GTTLE	DSKTQS	LLIV	NNATNV	VIKVCE	FQFCNDPF
1	1	10		20		30		40		50	L.	60		70		80		90	1	100		110		120		130	1 40
LGV	YYH	KNNKS	WMES	EFRVYS	SSANNO	TFEY	/SQPF	LMDLEG	KQGNF	KNLRE	FVFKI	NIDGY	FKIYSK	(HTPI)	ILVRD	LPQGF	SALEP	LVDLPI	GINI	TRFQTI	LALHR	SYLT	GDSSS	GWTA	GAAAYY	VGYLQF	RTFLLKYN
	1	150	1	160	1	170	T	180		190	ļ	200	ļ	210	1	220		230		240		250	1	260	Į.	270	280
ENG	TIT	DAVDC	ALDP	LSETKO	CTLKSF	TVEK	GIYQT	SNFRVQ	PTESI	VRFPN	ITNL	CPFGE	VFNATF	FASV	(AWNR	KRISN	CVADY	SVLYNS	ASFS	TFKCYG	SVSPTK	LNDLO	CFTNVY	ADSF	VIRGDE	VRQIAF	∙GQTGKIAD
		290		300		310		320	I	330		340		350		360		370		380		390	1	400		410	420
YNY	KLP	DDFTG	CVIA	WNSNNL	LDSKVG	GNYNY	(LYRLI	FRKSNL	KPFER	DISTE	IYQA	GSTPCI	NGVEGF	NCYFF	PLQSY	GFQPTI	VGVGY	QPYRVV	VLSFI	ELLHAF	PATVCO	PKKST	FNLVKN	IKCVN	FNFNGL	TGTGVL	.TESNKKFL
	1	430		440		450		460		470		480		490		500		510		520		530	1	540		550	560
PFQ	QFG	RDIAD	TTDA	VRDPQT	TLEILD	ITPCS	SFGGV	SVITPG	TNTSN	QVAVL	YQDVI	NCTEVI	PVAIHA	DQLTF	TWRV	YSTGSI	VVFQT	RAGCLI	GAEH	VNNSYE	CDIPI	GAGI	CASYQT	QTNSI	PRRARS	VASQSI	IAYTMSLG
	ł	570	ļ	580	l	590	1	600	1	610	- L	620		630	1	640	j	650		660	I	670	i	680	Į,	690	700
AEN	SVA	YSNNS	IAIP	TNFTIS	SVTTEI	LPVSM	(TKTS)	VDCTMY	ICGDS	TECSN	ILLLQ	YGSFC	TQLNRA	LTGIA	VEQD	KNTQE	/FAQV	KQIYKT	PPIK	DFGGFN	FSQIL	.PDPSH	(PSKRS	FIED	LLFNKV	TLADAG	FIKQYGDC
	1	710	ļ	720	1	730	1	740	Ţ	750	ļ	760		770	Ī	780	1	790	1	800		810	1	820	[830	840
LGD	IAA	RDLIC	AOKF	NGLTVI	LPPLLT	DEMIA	AOYTS	ALLAGT	ITSGW	TFGAG	AALO	IPFAM	OMAYRF	NGIG	/TONV	LYENOI	KLIAN	OFNSAI	GKIO	DSLSST	ASALO	KLOD	/VNONA	(OALN'	TLVKOL	SSNFGA	ISSVLNDI
	1	850		860	1	870		880	1	890		900		910	1	920		930		940	1	950	1	960	1	970	980
I SR	I D K	VFAFV	OTDR	LITGRI	05101	YVTOC)I TRA	AFTRAS	ANI AA	TKMSF	CVI GI	OSKRVI	DECGKO	SYNT MS	SEPOS.	APHGV	/FI HV	TYVPAC	FKNF	TTAPAI	CHDGK	AHEPE	REGVEN	SNGT	HWEVTO	RNEYEF	OTITIONT
	1	990	1	1000	1	1010	1	1020	1	1030	Ţ	1040	1	1050	1	1060	1	1070	T	1080	1	1090	1	1100	1	1110	1120
FVS	GNC	DVVTG	TVNN	туулрі	OPEL	ISEKEE		EKNHTS	וחעח	GDISC	TNAS	/VNTO	KETNRI	NEVA	(NI NE)		1 FI GK	VENVIK	.MDMA.	TWI GE1	AGI TA	TVMVI	ттинсо	NTSC	rsni kg	201211	CCKEDEDD
	1	1130	1	1140	-41-55	1150		1160	1	1170		1180		1190		1200	(1210	1	1220		1230	1	1240		1250	1260

SEPVLKGVKLHYT

1270 1273

	Leng	gth		Whole Protein 1273 aa							
×	Mole	ecular V	Weight	141.178	3,79 Da						
	Exti	nction	Coefficient (280 nm)	146.460 M ⁻¹ cm ⁻¹							
	Abse	orbanc	e (280 nm, 0.1%)	1.04							
	Isoe	lectric	Point (pI)	6,1	0						
	Cha	rge at	pH 7,0 ~	-26	,80						
	Ami	no Acio	1	Number	Percent						
	А	Ala	Alanine	79	6,21						
	С	Cys	Cysteine	40	3,14						
	D	Asp	Aspartic Acid	62	4,87						
	E	Glu	Glutamic Acid	48 3,77							
	F	Phe	Phenylalanine	77	6,05						
	G	Gly	Glycine	82	6,44						
	н	His	Histidine	17	1,34						
	I	Ile	Isoleucine	76	5,97						
	к	Lys	Lysine	61	4,79						
	L	Leu	Leucine	108	8,48						
	М	Met	Methionine	14	1,10						
	N	Asn	Asparagine	88	6,91						
	Р	Pro	Proline	58	4,56						
	Q	Gln	Glutamine	62	4,87						
	R	Arg	Arginine	42	3,30						
	S	Ser	Serine	99	7,78						
	т	Thr	Threonine	97 7,62							
	V	Val	Valine	97	7,62						
	vv	Trp	Tryptophan	12	0,94						
	Y	Tyr	Tyrosine	54 4,24							

Ilustración 7. Secuencia de aa en código de 1 letra para la proteína S en SnapGene Viewer. El programa numera la secuencia desde el 1 en adelante, no teniendo en cuenta en este caso la secuencia total del genoma, pues hemos descargado solo la traducción de la proteína S desde el NCBI en la página comentada.

Podemos acceder a las propiedades de la secuencia de aa de la proteína desde SnapGene Viewer donde nos indicará el número de tipos de aa que aparecen, su porcentaje, así como datos físico-químicos de la proteína S

Ilustración 8. Propiedades de la proteína S en SanpGene Viewer. Podemos ver el número de cada tipo de aa y su porcentaje en la secuencia, así como sus propiedades físicoquímicas.

También podemos ir alos detalles de los genes yaccederemos a una páginacon un Summary, unGenomic Contexty aGenomic regions,transcripts, and products yotros de mucho interés.

Podemos obtener mucha información de dicho gen que codifica para la famosa proteína S, así como al transcrito y productos finales.

Con el fichero **FASTA** de la secuencia genómica de la proteína S descargado podemos ejecutarlo en el programa **SnapGene Viewer**, donde podremos acceder a la secuencia y seleccionar el marco o pauta de lectura 1, que es el que empleará el ribosoma para la traducción de la proteína en cuestión.

Ilustración 9. Región Genómica de la proteína S, su **ORF, CDS, Transcritos** y Productos. Podemos seleccionar cada unos de ellos y acceder a información descriptiva del mismo, así como a enlaces de la biblioteca del NCBI para obtener más información de cada transcrito o producto.

Desde la página anterior,<u>https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF 009858895.2/</u> podemos acceder al fichero de GenBank del: Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome NCBI Reference Sequence: NC_045512.2. Desde aquí podemos acceder al fichero en formato FASTA para obtener la secuenciación del genoma a la que se hace referencia, donde indica la fecha, laboratorio, autores y métodos empleados, así como otros datos de interés para el investigador. Vemos que, a pesar de ser un virus de ARN, la notación en su secuenciación se hace en base al código de "letras" de nucleótidos de ADN ("A","T", "C", "G"), donde aparece la Timina en vez del Uracilo propio de los ARN's.

Ahora, para probar herramientas de bioinformática y aprender conceptos, al margen de que tengamos los genes identificados del **virus SARS-CoV-2**, pasaremos a buscar los **ORFs** copiando la secuencia del fichero **FASTA** y entrando en la página del **NCBI** (*National Center for Biotechnology Information* del *National Institutes of Health*, que es una institución pública de los EEUU). En esta página hay una herramienta de análisis. <u>https://www.ncbi.nlm.nih.gov/orffinder/</u>

ORF FINDER es un programa *on line* para encontrar **marcos abiertos de** lectura en secuencias de DNA, o RNA en nuestro caso. Al ejecutar el programa nos aparecen 159 marcos de lectura abiertos. Hemos de tener en cuenta que ORF finder solo busca marcos de lectura abiertos –un concepto teórico que no necesariamente ha de corresponder a un CDS-, determinados por los codones de inicio y stop, sin tener en cuenta las regiones promotoras, UTR's, etc, es así que salen más posibles proteínas que las que realmente se dan en la descripción del virus en GenBank.

Open Reading Frame Viewer																						
Sequence																						
	0 . 7																			Q.r.	a. Ara	- A 0 -
		IR K	19.K 1	RK (11	K 112 K	Ita K	0953	115 K	16 K	17 K	118 K	19 K	120 K	121 K	122 K	23 K	124 K	125 K	DE K	10 I27 K	ols • Paci	S* 10 7*
P* P* P* P*					·		UNU 2 W															
(U) ORFfinder_5.13.04317166		_				_	-							00000			_			_	00531	00>
06F12 06F32 06F32 06F42 06F33 06F47 0FF36 06F155 0FF14 06F13 06	ORF158 ORF58 ORF49 OF	0RF116 01 8F117 0RF11 0RF53 0RF11 9RF149 0RF54	ORF147 ORF5 RF55 0RF56 ORF114 0RF113 ORF148 0	7 ORF1 ORF111 ORF ORF146 ORF146 ORF145 ORF112 ORF	0RF143 92 0RF58 0 0RF14 0RF142 F144 0R	0RF139	0RF91 0RF11 0RF90 0RF90 0RF12 0RF12 2	0RF13	0RF18 0 0RF188 0RF188 0RF17 0RF15	ORF186	ORF133 ORF ORF21 ORF21 ORF88	97 1F132 22 0 0RF23 0 0RF	0RF24 0RF24 0RF25 86	ORF83 ORF83 ORF25	8F63 🔽 08F 08F64 12 📕 0	0RF68 ORF68 ORF67	RF130 OF ORF104 ORF70 ORF70 ORF129	08F71 08F7 08F4 128 00 08F72 08F73 00F73	0RF127 0RF5	38 08F7 08F7	0RF31 0RF79 25 0RF78 0RF99 0RF124 0RF124 0RF124	ORF98 ORF32 ORF81 ORF81
0F96 0F97	0	RF52 CRF93					0010		ORF136	89 0RF1	85					UKPOP	•	ORF183	ORF74 ORF29 ORF	0RF7	16	
1 1K 2K 3K 4K 5K	6 K 7 K	8 K	9 K 1	ек рі	К 12 К	13 K	14 K	15 K	16 K	17 K	18 K	19 K	20 K	21 K	22 K	23 K	24 K	25 K	26 K	27 K	28 K	29,98
1: 130K (29,903 nt)																					🕺 🌻 Trac	ks shown: 2/13
ORF2 (2595 as) Display ORF as Mark	Mark subset Label St ORF9 ORF2 ORF26 ORF26	Marked: 0 rand Fran + + + +	Download m ie Start 2 266 1 13768 2 21536 2 28274	arked set 3 Stop 13483 21555 25384 29533	as Protein FAST Length (nt aa) 13218 4405 7788 2595 3849 1282 1260 419	A ~																
VSTCSTHTINGPHQCLLSSTAAT6GATV/TGTSKEVCGAHMILKEVVSOV ENPHLM6007PKCDR#MPMHLRIMASLVLARKHTTCCSLSHRFYRLANEC	ORF75	+ :	3 26523	20220	669 222																	
OPE2 Norked est (0)	ORF77	+	3 27894	28259	366 121																	
SmartBLAST SmartBLAST best hit titles 9	ORF7	+	1 27394	27759	366 121																	
BLAST	ORF150	-	3 6489	6187	303 100																	
BLAST	ORF78	+	3 28284	28577	294 97																	
BLAST Database: Non-redundant protein sequences (nr) Y			20102	00400	004107																	

Go back to the submitting page

< ORFfinder submitting page

Ilustración 10. Marcos Abiertos de Lectura en el genoma del SARS-CoV-2

Sabemos que La **región de codificación** de un gen, también conocida como **CDS** (*Coding Sequence*), es esa porción del ADN de un gen o bien ARN que codifica la proteína. La región generalmente comienza en el extremo 5' por un codón de inicio y termina en el extremo 3' con un codón de terminación. Analizando el fichero de **Gen Bank NCBI**, Reference Sequence: <u>NC 045512.2</u> podemos extraer la información real del virus secuenciado y sus proteínas o productos génicos funcionales que se indican en los **FEATURES**. Podemos resumirlos para el caso del **SARS-CoV-2** concreto secuenciado por este equipo y laboratorio que se indica. Pasamos a resumir cierta información de los **FEATURES** como los **11 genes** y sus **CD's** correspondientes, así como sus localizaciones y rangos en la secuencia de la cadena de **ARN** que, por convenio, se escribe en el sentido **5'->3'** (aquí no adjuntamos la secuencia de la cadena, pues es muy larga):

FEATURES	Location/Qualifiers
source	129903
	<pre>/organism="Severe acute respiratory syndrome</pre>
coronavirus 2"	
	/mol type="genomic RNA"
	/isolate="Wuhan-Hu-1"
	/host="Homo sapiens"
	/db xref="taxon:2697049"
	/country="China"
	/collection date="Dec-2019"
	-

Ilustración 11.Parte del FEATURES del fichero donde indica cuándo y dónde se secuenció, así como el organismo y su taxón de referencia.

Del fichero **GenBank** referente a la referencia indicada del virus **SARS-CoV-2** podemos extraer la siguiente información que resumimos sobre sus **genes** y los

respectivos **CDS's**, así como sus **traducciones a aa**, que no los adjuntaremos por ahorrar espacio.

Cabe señalar que estos **CD's** indicados en el fichero de **GenBank** del virus son los **marcos de lectura abiertos** que **realmente se expresarán en el virus**, siendo que los localizados por **ORF Finder** anteriormente lo son desde un aspecto teórico, siendo la experimentación la que nos indicará cuáles de ellos verdaderamente son codificadores. En los **FEATURES**, en cada **CDS** aparece la **traducción a proteínas** o **producto génico** que se expresa realmente en el virus. Para probar la eficacia de **ORF FINDER** intentaremos localizar el **ORF** correspondiente a la famosa "**proteína S**" del virus, y la compararemos con la traducción que aparece en el fichero de **GenBank** que hemos consultado.

La traducción del **CDS** que da lugar a la **proteína S** produce una secuencia, según el fichero **Gen Bank**, que viene dada por los aminoácidos:

/translation="MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVS GTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKS WMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPI GINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGI YQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIY QAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGV LTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPT WRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSI AIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIK DFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSAL LAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ ALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKR VDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTD NTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT'

Sabemos, por **GenBank**, que dicha proteína viene codificada en la secuencia del genoma en la región **CDS: 21563..25384**. Ello nos indica que **ORF Finder** busca

marcos abiertos de lectura, pero que no contempla el hecho de los **promotores** que son necesarios para el inicio de la traducción y que vendrán a ser los **CDS's** que realmente se traducen a **aminoácidos**. Ahora, al conocer donde es el inicio de la **proteína "S"** en la secuencia, procederemos a ponerlo en el buscador de **ORF FINDER**, situándonos en el nucleótido en cuestión donde comienza el codón de inicio de dicha proteína.

Ilustración 12. Inicio de la proteína S en la secuencia del genoma en la etiqueta Marker 1. Podemos ver los 8 primeros aa de la proteína que se corresponden con los indicados en GenBank. Vemos que el inicio de la proteína S está dentro de un ORF ya iniciado anteriormente en la secuencia por ORF FINDER.

Desde ORF FINDER podemos poner un marcador de inicio donde indica el CDS de la proteína S en el fichero Gen Bank, así como otro marcador en su fin: 21563..25384. Vemos que el CDS de la proteína S se encuentra dentro de un ORF identificado por ORF FINDER, pero no en el inicio de éste a causa de la pauta de lectura. En ese rango de la secuencia que hemos marcado, podemos observar como ORF FINDER nos muestra otros marcos de lectura abiertos, algunos en la hebra codificante con una u otra pauta de lectura posible, otros lo mismo, pero en la hipotética hebra complementaria que, en nuestro caso, al tratarse un virus monocatenario de ARN, no existe, pero que ORF FINDER sí contempla en este caso.

Ilustración 13.Dos marcas en el inicio y fin del CDS correspondiente a la proteína S dentro del ORF26 identificado por el programa. Mediante el buscador del navegador podemos poner marcas en la secuencia o seleccionar rangos dentro de esta para realizar búsquedas en Gen Bank del NCBI.

SnapGen Viewer

Podemos utilizar el programa gratuíto **SnapGene Viewer** y cargar la secuencia **FASTA** del virus para obtener un gráfico de su **genoma**, con los **11 marcos de lectura** correspondientes a los **11 genes** con sus respectivos **CDS**, indicados en **color naranja** y en el sentido de lectura de la hebra de **ARN**, de **5'->3'**, siendo que también aparecen otros 4 **CDS's**, en color verde y sentido opuesto, que el programa calcula al interpretar la lectura de la "teórica e inexistente, en este caso, **hebra molde**" –pues nuestro **virus** es de **ARN monocatenario positivo**, solo que **SnapGene Viewer** nos calcula la lectura de la hebra complementaria, hipotética en este caso-. También podemos observar en la secuencia dónde actúan las diferentes **enzimas**.

Ilustración 15. Esquema del genoma del SARS-CoV-2 indicando sus genes en naranja y las enzimas asociadas a las regiones del genoma.

lado, podemos ver en la secuencia del genoma, mediante SnapGen Viewer, el

porcentaje de nucleótidos C, G, que sirve de base para el análisis de un gen por las propiedades fisicoquímicas de estos dos nucleótidos.

Ilustración 16. Contenido en porcentajes de bases C/G en la cadena de ARN del genoma del virus SARS-CoV-2. Observamos que en los extremos de la secuencia del genoma de ARN aumenta el porcentaje de bases de desoxirribonucleótidos C/G.

También, desde el NCBI podemos descargar el fichero FASTA del genoma de SARS-CoV-2 secuenciado en cuestión y abrirlo con SnapGene Viewer.

Hemos de tener presente que **SnapGene Viewer** permite carga de la página del NCBI los genomas y sus FEATURES si le indicamos la referencia o número de la secuencia NCBI (en nuestro caso, para el SARS-CoV-2 secuenciado según la referencia que el NCBI Virus nos proporciona, enlace proporcionado en la búsqueda primera por "Covid 19" que hemos realizado al principio):

NC 045512

Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome (Wu,F., et al.) Attributes Nuc Completeness: complete Length: 29903 Mol Type: RNA Host: Homo sapiens Geo Location: China Collection Date: 2019-12

jauguu cuuguuaaca acuaaacgaa caauguuugu uuuucuuguu uuauugccac uagucucuag

Ilustración 17. Observamos donde comienza el inicio de la codificación de la proteína S, procedente de un ORF ya abierto anteriormente en la secuencia. SnapGene Viewer nos muestra los posibles marcos de lectura abiertos, pero en este caso identifica el CDS de la proteína S, que será la codificación que finalmente se traducirá o expresará

genéticamente.

21.600

caauguuugu uuuucuuguu uuauugccac uagucucuag 21.600

caacucagga cuuguucuua ccuuucuuuu ccaauguuac

21.750

Ilustración 18. Vemos el inicio del gen que codifica para la proteína S en azul.Hay 3 pautas de lectura que se indican, las cuales dan lugar a distintos aa. la nuestra es la marcada en naranja. Vemos que antes de la Metionina que inicia la secuencia de, en el marco abierto le precede una Treonina (T).

Ilustración 19. Vemos que el CDS que precede a la secuencia del CDS de la proteína S, marcado con una X en en dibujo, tiene una pauta de lectura diferente a la de la codificación de la proteína S, la cual está debajo y cuyo ORF se inicia anteriormente, indicado con la M en un círculo más a la izquierda. Ese ORF ya está abierto, pero en él la cadena ha sido utilizada en una pauta de lectura diferente a la identificada por el programa, la pauta de lectura que produce la traducción que hay encima de ésta. Cuando se inicia la traducción de la proteína S, el ribosoma utilizará esta segunda pauta y no la primera que venía utilizando, siendo que indicamos el primer aa de la proteína S con la M en el segundo círculo de la figura, lugar donde comienza la secuencia de aa de la proteína S.

Ahora podemos volver al **NCBI datasets** del gen que codifica para la **proteína S**, acceder a las regiones genómicas del: <u>S surface glycoprotein [Severe acute</u> <u>respiratory syndrome coronavirus 2] Gene ID: 43740568, updated on 7-May-2022</u> (<u>https://www.ncbi.nlm.nih.gov/gene/43740568</u>). Seleccionamos la banda roja corres`pondiente al **CDS** del **gen S** y accedemos a un menú que nos lleva a la base de datos **BLAST**, en concreto accedemos a <u>**BLAST Protein: YP 009724390.1**</u>, en donde se selecciona la región concreta de la **proteína S**. Nos aparecerá un listado de búsqueda con resultados de secuencias que, por alineamiento, aparecen de mayor a menor identificación con las habidas en la **BB.DD** del **BLAST Protein**.

De	scriptions	Graphic Summary	Alignments	Taxon	omy											
Se	quences pro	oducing significant al	ignments					Downlo	ad 〜	s	elect o	olumn	s ~ S	how	100 🗸	0
	select all 1	00 sequences selected				Gen	Pept	Graphics	Distan	ce tree	of res	ults N	<u>lultiple al</u>	ignme	nt MSA View	ver
		Description				Scientifi	c Name		Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	5.2]	Severe ad	cute respiratory	syndror	ne coronaviru.	. 2557	2557	99%	0.0	100.00%	1282	BCN86353.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	oute respiratory	syndron	ne coronaviru.	. 2555	2555	99%	0.0	100.00%	1273	QIZ15717.1	
~	Chain A. Spike	glycoprotein [Severe acute res	piratory syndrome core	onavirus 2]	Severe a	cute respiratory	syndron	ne coronaviru.	. 2554	2554	99%	0.0	100.00%	1310	<u>6XR8 A</u>	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndron	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QOF12329.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	cute respiratory	syndror	ne coronaviru.	2553	2553	99%	0.0	99.92%	1273	QWC77885.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QRN63738.1	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QMT96172.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QIU80973.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QOF15989.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	3.2]	Severe a	cute respiratory	syndron	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QMT94564.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	cute respiratory	syndron	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QKU28906.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>[]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QOU86714.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QZJ49063.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QKV35819.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QIA98583.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QIZ14569.1	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	oute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QIZ16559.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QIU81873.2	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QOU93902.1	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QOF10625.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	100.00%	1261	QXF49728.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QIU81885.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru.	. 2553	2553	99%	0.0	99.92%	1273	QWC76579.1	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	5 2]	Severe a	cute respiratory	syndron	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QKV06859.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QOF08429.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe a	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QIS61254.1	
~	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>s 2]</u>	Severe ad	cute respiratory	syndror	ne coronaviru	. 2553	2553	99%	0.0	99.92%	1273	QNV50022.1	
	surface glycop	rotein [Severe acute respiratory	syndrome coronavirus	<u>[2]</u>	Severe a	cute respiratory	syndron	ne coronaviru.	. 2553	2553	99%	0.0	100.00%	1273	YP 009724390	1.1

Ilustración 20. Listado de secuencias encontradas tomando como referencia la proteína S en Blast del NCBI. La mayoría muestrasn un 100% de identidad.

Podemos acceder a la información del enlace de la 1ª secuencia de la búsqueda y en ella aparecerá sus descripciones, así como su alineamiento con las secuencias de la BB.DD de BLAST, mostrando las identidades de nucleótidos y posibles gaps en los alineamientos en la búsqueda por comparación de secuencias. Desde este fichero hay un enlace de Graphics donde podemos acceder a un navegador de BLAST sobre la secuencia de aa. En el, en rojo, podemos ver una primera región no alineada, pues el alineamiento correcto comienza en la posición 12, como se indica en el resultado de la búsqueda en la base de datos de BLAST.

-	Download	~	GenPept	Graphics
---	----------	---	---------	----------

surface glycoprotein [Severe acute respiratory syndrome coronavirus 2] Sequence ID: <u>BCN86353.1</u> Length: 1282 Number of Matches: 1

Range 1: 21 to 1282 GenPept Graphics

Vext Match 🔺 Pi

Score 2557 b	oits(662	Expect 7) 0.0	Method Compositional	matrix adjust.	Identities 1262/1262(100	Positives 9%) 1262/1	262(100	Gaps %) 0/12
Query	12	SSOCVNI	TTRTOL PPAYTN	SETRGVYYPDKV	FRSSVLHSTODLFL		ATHVS	71
Sbjct	21	SSQCVNI	TTRTQLPPAYTN	SFTRGVYYPDKV	FRSSVLHSTQDLFL	PFFSNVTWFF	AIHVS	80
Query	72	GTNGTK	REDNPVLPENDGV	YFASTEKSNIIR YFASTEKSNIIR	GWIFGTTLDSKTQS		VIKVC	131
sbjct	81	GTNGTK	REDNPVLPENDGV	YFASTEKSNIIR	GWIFGTTLDSKTQS	LLIVNNATN	VIKVC	140
Query	132	EFQECNE	OPFLGVYYHKNNK	SWMESEFRVYSS SWMESEFRVYSS	ANNCTFEYVSQPFL ANNCTFEYVSOPFL	MDLEGKOGNE	KNLRE	191
Sbjct	141	EFQFCN	PFLGVYYHKNNK	SWMESEFRVYSS	ANNCTFEYVSQPFL	MDLEGKQGNF	KNLRE	200
Query	192	FVFKNI	OGYFKIYSKHTPI OGYFKIYSKHTPI	NLVRDLPQGFSA	LEPLVDLPIGINIT	REQTLLALHE	SYLTP	251
sbjct	201	FVFKNI	OGYFKIYSKHTPI	NLVRDLPQGFSA	LEPLVDLPIGINIT	REQTLIALHE	SYLTP	260
Query	252	GDSSSGL	TAGAAAYYVGYL	QPRTFLLKYNEN OPRTFLLKYNEN	GTITDAVDCALDPL GTITDAVDCALDPL	SETKCTLKSF	TVEKG	311
bjct	261	GDSSSGL	TAGAAAYYVGYL	<i><u>QPRTFLLKYNEN</u></i>	GTITDAVDCALDPL	SETKCTLKSF	TVEKG	320
Query	312	IYOTSNE	RVQPTESIVRFP	NITNLCPFGEVF NITNLCPFGEVF	NATREASVYAWNRK	RISNCVADYS	VLYNS VLYNS	371
bjct	321	IYQTSNI	RVQPTESIVRFP	NITNLCPFGEVF	NATRFASVYAWNRK	RISNCVADYS	VLYNS	380
Query	372	ASESTE		CFTNVYADSFVI CFTNVYADSFVI	RGDEVRQIAPGQTG RGDEVROIAPGOTG	KIADYNYKLF	PDDFTG	431
bjct	381	ASESTE	CYGVSPTKLNDL	CFTNVYADSFVI	RGDEVRQIAPGQTG	KIADYNYKLF	PDDFTG	440
Query	432	CVIAWNS	SNNLDSKVGGNYN	YLYRLFRKSNLK	PFERDISTEIYQAG	STPCNGVEGE	NCYEP	491
bjct	441	CVIAWNS	SNNLDSKVGGNYN	YLYRLFRKSNLK	PFERDISTEIYQAG	STPCNGVEGF	NCYFP	500
Query	492	LOSYGE	2 PTNGVGYQPYRV 2 PTNGVGYOPYRV	VVLSFELLHAPA		KCVNENENGL	TGTGV	551
bjct	501	LQSYGFO	PTNGVGYQPYRV	VVLSFELLHAPA	TVCGPKKSTNLVKN	KCVNFNFNGL	TGTGV	560
Query	552		CELPEQQEGRDIA	DTTDAVRDPQTL DTTDAVRDPOTL	EILDITPCSFGGVS EILDITPCSFGGVS	VITPGTNTS		611
bjct	561	LTESNK	-LPFQQFGRDIADTTDAVRDPQTLEILDITPC	EILDITPCSFGGVS	VITPGTNTSN	IQVAVL	620	
Query	612	YODVNC	EVPVAIHADQLT	PTWRVYSTGSNV PTWRVYSTGSNV	FQTRAGCLIGAEHV	NNSYECDIPI	GAGIC	671
bjct	621	YQDVNC	TEVPVAIHADQLT	PTWRVYSTGSNV	FÕTRAGCLIGAEHV	NNSYECDIPI	GAGIC	680
uery	672	ASYQTQ	INSPRRARSVASQ	SIIAYTMSLGAE SIIAYTMSLGAE	NSVAYSNNSIAIPT NSVAYSNNSIAIPT	NFTISVTTEI NFTISVTTEI	LPVSM	731
bjct	681	ASYQTQ	INSPRRARSVASQ	SIIAYTMSLGAE	NSVAYSNNSIAIPT	NFTISVTTEI	LPVSM	740
Query	732	TKTSVDO	TMYICGDSTECS	NLLLQYGSFCTQ NLLLQYGSFCTQ	LNRALTGIAVEQDK	NTQEVFAQVE	QIYKT	791
bjct	741	TKTSVDO	TMYICGDSTECS	NLLLQYGSFCTQ	LNRALTGIAVEQDK	NTQEVFAQVE	QIYKT	800
Query	792	PPIKDFO	GFNFSQILPDPS GFNFSQILPDPS	KPSKRSFIEDLL KPSKRSFIEDLL	FNKVTLADAGFIKQ FNKVTLADAGFIKQ	YGDCLGDIAA YGDCLGDIAA	RDLIC	851
bjct	801	PPIKDFO	GENESQILPDPS	KPSKRSFIEDLL	FNKVTLADAGFIKQ	YGDCLGDIAA	RDLIC	860
Query	852	AQKENG	TVLPPLLTDEMI	AQYTSALLAGTI AQYTSALLAGTI	TSGWTFGAGAALQI TSGWTFGAGAALQI	PFAMQMAYRE	NGIGV	911
bjct	861	AQKENG	TVLPPLLTDEMI	AQYTSALLAGTI	TSGWTFGAGAALQI	PFAMQMAYRF	NGIGV	920
Query	912		NQKLIANQFNSA	IGKIQDSLSSTA IGKIQDSLSSTA	SALGKLQDVVNQNA SALGKLQDVVNQNA	QALNTLVKQL	SSNFG	971
bjct	921	TQNVLYE	ENQKLIANQFNSA	IGKIQDSLSSTA	SALGKLQDVVNQNA	QALNTLVKQL	SSNFG	980
Query	972	AISSVL	DILSRLDKVEAE	VQIDRLITGRLQ VQIDRLITGRLQ	SLQTYVTQQLIRAA SLQTYVTQQLIRAA	EIRASANLAA	TKMSE	1031
bjct	981	AISSVL	DILSRLDKVEAE	VQIDRLITGRLQ	SLQTYVTQQLIRAA	EIRASANLAA	TKMSE	1040
Query	1032	CVLGQSH	CRVDFCGKGYHLM CRVDFCGKGYHLM	SFPQSAPHGVVF SFPQSAPHGVVF	LHVTYVPAQEKNFT LHVTYVPAQEKNFT	TAPAICHDG	AHEPR	1091
bjct	1041	CVLGQSI	RVDFCGKGYHLM	SFPQSAPHGVVF	LHVTYVPAQEKNFT	TAPAICHDG	CAHEPR	1100
Query	1092	EGVEVS	GTHWFVTQRNFY	EPQIITTDNTFV EPQIITTDNTFV	SGNCDVVIGIVNNT SGNCDVVIGIVNNT	VYDPLQPELD	SFKEE	1151
bjct	1101	EGVEVSI	IGTHWEVTQRNEY	EPQIITTDNTFV	SGNCDVVIGIVNNT	VYDPLQPELD	SFKEE	1160
Query	1152		HTSPDVDLGDIS	GINASVVNIQKE GINASVVNIQKE	IDRLNEVAKNLNES IDRLNEVAKNLNES	LIDLQELGKY	EQYIK	1211
bjct	1161	LDKYFK	HTSPDVDLGDIS	GINASVVNIQKE	IDRLNEVAKNLNES	LIDLQELGKY	EQYIK	1220
uery	1212	WPWYIW	GFIAGLIAIVMV	TIMLCCMTSCCS	clkgccscgscckF CLKGCCSCGSCCKF	DEDDSEPVLK		1271
bjct	1221	WPWYIWI	GFIAGLIAIVMV	TIMLCCMTSCCS	CLKGCCSCGSCCKF	DEDDSEPVLK	GVKLH	1280
uery	1272	YT 127 YT	73					
Sbict	1281	YT 128	32					

Ilustración 21. Cadena de aa de la Surface Glycoprotein de la proteína S. La 1ª cadena comienza a alinerse a partir del aa 12 hasta el 1281.

gi 1958892388	coprotein [\$ dbj BCN8635	Severe acut	e respirato	ory syndrom	e coronavi	rus 2]
d	50	100	150	200	250	300
	353.1 - Find:	28	~		150	
(U) BLAST Re	FVFLVLLPLN nt for group 11 200 sults for:	SSQCVNLTT templates, ref YP_00972	BLAST Resu	TNSFTRGVYY lts for: ref	PDKV FRSSV YP_00972439	LHSTQDL
BCN86353.1:		20	30	40	50	60
Contact Co National Center 1 8600 Rockville Pi	MFVFLVLLPLVS LPFFSNVTWFH LDSKTQSLLIVT ANNCTFEYVSQ PQGFSALEPLVI PRTFLLKYNEN VRFPNITNLCPI GVSPTKLNDLC AWNSNNLDSK CYFPLQSYGFQ	SQCVNLTTRTQI IAIHVSGTNGTKI INATNVVIKVCEI IPFLMDLEGKQG GTITDAVDCALD GTITDAVDCALD GEVFNATRFAS FTNVYADSFVIR VGGNYNYLYRLF PTNGVGYQPYR	LPPAYTNSFTRO RFDNPVLPFND FQFCNDPFLGV SNFKNLREFVFK "LLALHRSYLTPO PLSETKCTLKSI VYAWNRKRISN GDEVRQIAPGO FRKSNLKPFERD VV	GVYYPDKVFRSSV GVYFASTEKSNII YYHKNNKSWME NIDGYFKIYSKHT GDSSSGWTAGAA TVEKGIYQTSNF CVADYSVLYNSA QTGKIADYNYKLP ISTEIYQAGSTPO	ALHSTQDLF RGWIFGTT SEFRVYSS TPINLVRDL AYYVGYLQ RVQPTESI SFSTFKCY DDFTGCVI CNGVEGFN	

Ilustración 22. Hemos seleccionado en el navegador de BLAST de la 1^ª secuencia encontrada la región no alineada, marcada en líneas rojas y descrita en el recuadro donde, en azul, se muestran los aminoácidos que no se han alineado con nuestra secuencia "problema". La cadena empieza a alinearse a partir del aa 12 hasta el 1281.

BIBLIOGRAFÍA SEGUIMIENTO

- <u>https://apps.who.int/iris/bitstream/handle/10665/338892/WHO-2019-nCoV-genomic_sequencing-2021.1-spa.pdf?sequence=1&isAllowed=y</u>
- <u>https://www.ncbi.nlm.nih.gov/sars-cov-</u>
 <u>2/?utm_source=gquery&utm_medium=referral&utm_campaign=KnownItemSen_sor:org_genome</u>
- <u>https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Genome&Virus</u> Lineage_ss=SARS-CoV-2,%20taxid:2697049
- <u>https://conogasi.org/articulos/gen-desde-el-codigo-genetico-hasta-la-ingenieria-genetica/</u>
- https://www.ncbi.nlm.nih.gov/